A maximum principle à la Hadamard for biharmonic operators with applications to the Bergman spaces
نویسندگان
چکیده
منابع مشابه
Compact Operators on Bergman Spaces
We prove that a bounded operator S on La for p > 1 is compact if and only if the Berezin transform of S vanishes on the boundary of the unit disk if S satisfies some integrable conditions. Some estimates about the norm and essential norm of Toeplitz operators with symbols in BT are obtained.
متن کاملOperators on weighted Bergman spaces
Let ρ : (0, 1] → R+ be a weight function and let X be a complex Banach space. We denote by A1,ρ(D) the space of analytic functions in the disc D such that ∫ D |f(z)|ρ(1 − |z|)dA(z) < ∞ and by Blochρ(X) the space of analytic functions in the disc D with values in X such that sup|z|<1 1−|z| ρ(1−|z|)‖F ′(z)‖ < ∞. We prove that, under certain assumptions on the weight, the space of bounded operator...
متن کاملOPERATORS ON WEIGHTED BERGMAN SPACES (0<p≤1) AND APPLICATIONS
We describe the boundedness of a linear operator from Bp(ρ) = {f : D → C analytic : (∫ D ρ(1 − |z|) (1 − |z|) |f(z)| dA(z) )1/p < ∞} , for 0 < p ≤ 1 under some conditions on the weight function ρ, into a general Banach space X by means of the growth conditions at the boundary of certain fractional derivatives of a single X-valued analytic function. This, in particular, allows us to characterize...
متن کاملUniform Boundedness Principle for operators on hypervector spaces
The aim of this paper is to prove the Uniform Boundedness Principle and Banach-Steinhaus Theorem for anti linear operators and hence strong linear operators on Banach hypervector spaces. Also we prove the continuity of the product operation in such spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Comptes Rendus de l'Académie des Sciences - Series I - Mathematics
سال: 1999
ISSN: 0764-4442
DOI: 10.1016/s0764-4442(99)80308-5